Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Multi-Time-Scale Input Approaches for Hourly-Scale Rainfall-Runoff Modeling based on Recurrent Neural Networks (2103.10932v2)

Published 30 Jan 2021 in physics.ao-ph and cs.LG

Abstract: This study proposes two straightforward yet effective approaches to reduce the required computational time of the training process for time-series modeling through a recurrent neural network (RNN) using multi-time-scale time-series data as input. One approach provides coarse and fine temporal resolutions of the input time-series to RNN in parallel. The other concatenates the coarse and fine temporal resolutions of the input time-series data over time before considering them as the input to RNN. In both approaches, first, finer temporal resolution data are utilized to learn the fine temporal scale behavior of the target data. Next, coarser temporal resolution data are expected to capture long-duration dependencies between the input and target variables. The proposed approaches were implemented for hourly rainfall-runoff modeling at a snow-dominated watershed by employing a long and short-term memory (LSTM) network, which is a newer type of RNN. Subsequently, the daily and hourly meteorological data were utilized as the input, and hourly flow discharge was considered as the target data. The results confirm that both of the proposed approaches can reduce the computational time for the training of RNN significantly (up to 32.4 times). Furthermore, one of the proposed approaches improves the estimation accuracy.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.