Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Zero-Delay Lossy Coding of Linear Vector Markov Sources: Optimality of Stationary Codes and Near Optimality of Finite Memory Codes (2103.10810v3)

Published 19 Mar 2021 in cs.IT and math.IT

Abstract: Optimal zero-delay coding (quantization) of $\mathbb{R}d$-valued linearly generated Markov sources is studied under quadratic distortion. The structure and existence of deterministic and stationary coding policies that are optimal for the infinite horizon average cost (distortion) problem are established. Prior results studying the optimality of zero-delay codes for Markov sources for infinite horizons either considered finite alphabet sources or, for the $\mathbb{R}d$-valued case, only showed the existence of deterministic and non-stationary Markov coding policies or those which are randomized. In addition to existence results, for finite blocklength (horizon) $T$ the performance of an optimal coding policy is shown to approach the infinite time horizon optimum at a rate $O(\frac{1}{T})$. This gives an explicit rate of convergence that quantifies the near-optimality of finite window (finite-memory) codes among all optimal zero-delay codes.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.