Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Noise Modulation: Let Your Model Interpret Itself (2103.10603v1)

Published 19 Mar 2021 in cs.LG and cs.CV

Abstract: Given the great success of Deep Neural Networks(DNNs) and the black-box nature of it,the interpretability of these models becomes an important issue.The majority of previous research works on the post-hoc interpretation of a trained model.But recently, adversarial training shows that it is possible for a model to have an interpretable input-gradient through training.However,adversarial training lacks efficiency for interpretability.To resolve this problem, we construct an approximation of the adversarial perturbations and discover a connection between adversarial training and amplitude modulation. Based on a digital analogy,we propose noise modulation as an efficient and model-agnostic alternative to train a model that interprets itself with input-gradients.Experiment results show that noise modulation can effectively increase the interpretability of input-gradients model-agnosticly.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.