Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Characterizing the Communication Requirements of GNN Accelerators: A Model-Based Approach (2103.10515v1)

Published 18 Mar 2021 in cs.AR

Abstract: Relational data present in real world graph representations demands for tools capable to study it accurately. In this regard Graph Neural Network (GNN) is a powerful tool, wherein various models for it have also been developed over the past decade. Recently, there has been a significant push towards creating accelerators that speed up the inference and training process of GNNs. These accelerators, however, do not delve into the impact of their dataflows on the overall data movement and, hence, on the communication requirements. In this paper, we formulate analytical models that capture the amount of data movement in the most recent GNN accelerator frameworks. Specifically, the proposed models capture the dataflows and hardware setup of these accelerator designs and expose their scalability characteristics for a set of hardware, GNN model and input graph parameters. Additionally, the proposed approach provides means for the comparative analysis of the vastly different GNN accelerators.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.