Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

TOP: Backdoor Detection in Neural Networks via Transferability of Perturbation (2103.10274v1)

Published 18 Mar 2021 in cs.LG

Abstract: Deep neural networks (DNNs) are vulnerable to "backdoor" poisoning attacks, in which an adversary implants a secret trigger into an otherwise normally functioning model. Detection of backdoors in trained models without access to the training data or example triggers is an important open problem. In this paper, we identify an interesting property of these models: adversarial perturbations transfer from image to image more readily in poisoned models than in clean models. This holds for a variety of model and trigger types, including triggers that are not linearly separable from clean data. We use this feature to detect poisoned models in the TrojAI benchmark, as well as additional models.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.