Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Collective Decision of One-vs-Rest Networks for Open Set Recognition (2103.10230v2)

Published 18 Mar 2021 in cs.CV

Abstract: Unknown examples that are unseen during training often appear in real-world machine learning tasks, and an intelligent self-learning system should be able to distinguish between known and unknown examples. Accordingly, open set recognition (OSR), which addresses the problem of classifying knowns and identifying unknowns, has recently been highlighted. However, conventional deep neural networks using a softmax layer are vulnerable to overgeneralization, producing high confidence scores for unknowns. In this paper, we propose a simple OSR method based on the intuition that OSR performance can be maximized by setting strict and sophisticated decision boundaries that reject unknowns while maintaining satisfactory classification performance on knowns. For this purpose, a novel network structure is proposed, in which multiple one-vs-rest networks (OVRNs) follow a convolutional neural network feature extractor. Here, the OVRN is a simple feed-forward neural network that enhances the ability to reject nonmatches by learning class-specific discriminative features. Furthermore, the collective decision score is modeled by combining the multiple decisions reached by the OVRNs to alleviate overgeneralization. Extensive experiments were conducted on various datasets, and the experimental results showed that the proposed method performed significantly better than the state-of-the-art methods by effectively reducing overgeneralization.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.