Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reward Signal Design for Autonomous Racing (2103.10098v2)

Published 18 Mar 2021 in cs.RO

Abstract: Reinforcement learning (RL) has shown to be a valuable tool in training neural networks for autonomous motion planning. The application of RL to a specific problem is dependent on a reward signal to quantify how good or bad a certain action is. This paper addresses the problem of reward signal design for robotic control in the context of local planning for autonomous racing. We aim to design reward signals that are able to perform well in multiple, competing, continuous metrics. Three different methodologies of position-based, velocity-based, and action-based rewards are considered and evaluated in the context of F1/10th racing. A novel method of rewarding the agent on its state relative to an optimal trajectory is presented. Agents are trained and tested in simulation and the behaviors generated by the reward signals are compared to each other on the basis of average lap time and completion rate. The results indicate that a reward based on the distance and velocity relative to a minimum curvature trajectory produces the fastest lap times.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.