Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Self-Supervised Adaptation for Video Super-Resolution (2103.10081v1)

Published 18 Mar 2021 in cs.CV

Abstract: Recent single-image super-resolution (SISR) networks, which can adapt their network parameters to specific input images, have shown promising results by exploiting the information available within the input data as well as large external datasets. However, the extension of these self-supervised SISR approaches to video handling has yet to be studied. Thus, we present a new learning algorithm that allows conventional video super-resolution (VSR) networks to adapt their parameters to test video frames without using the ground-truth datasets. By utilizing many self-similar patches across space and time, we improve the performance of fully pre-trained VSR networks and produce temporally consistent video frames. Moreover, we present a test-time knowledge distillation technique that accelerates the adaptation speed with less hardware resources. In our experiments, we demonstrate that our novel learning algorithm can fine-tune state-of-the-art VSR networks and substantially elevate performance on numerous benchmark datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.