Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Regularized Non-monotone Submodular Maximization (2103.10008v1)

Published 18 Mar 2021 in cs.DS

Abstract: In this paper, we present a thorough study of maximizing a regularized non-monotone submodular function subject to various constraints, i.e., $\max { g(A) - \ell(A) : A \in \mathcal{F} }$, where $g \colon 2\Omega \to \mathbb{R}+$ is a non-monotone submodular function, $\ell \colon 2\Omega \to \mathbb{R}+$ is a normalized modular function and $\mathcal{F}$ is the constraint set. Though the objective function $f := g - \ell$ is still submodular, the fact that $f$ could potentially take on negative values prevents the existing methods for submodular maximization from providing a constant approximation ratio for the regularized submodular maximization problem. To overcome the obstacle, we propose several algorithms which can provide a relatively weak approximation guarantee for maximizing regularized non-monotone submodular functions. More specifically, we propose a continuous greedy algorithm for the relaxation of maximizing $g - \ell$ subject to a matroid constraint. Then, the pipage rounding procedure can produce an integral solution $S$ such that $\mathbb{E} [g(S) - \ell(S)] \geq e{-1}g(OPT) - \ell(OPT) - O(\epsilon)$. Moreover, we present a much faster algorithm for maximizing $g - \ell$ subject to a cardinality constraint, which can output a solution $S$ with $\mathbb{E} [g(S) - \ell(S)] \geq (e{-1} - \epsilon) g(OPT) - \ell(OPT)$ using $O(\frac{n}{\epsilon2} \ln \frac 1\epsilon)$ value oracle queries. We also consider the unconstrained maximization problem and give an algorithm which can return a solution $S$ with $\mathbb{E} [g(S) - \ell(S)] \geq e{-1} g(OPT) - \ell(OPT)$ using $O(n)$ value oracle queries.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.