Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Regularized Non-monotone Submodular Maximization (2103.10008v1)

Published 18 Mar 2021 in cs.DS

Abstract: In this paper, we present a thorough study of maximizing a regularized non-monotone submodular function subject to various constraints, i.e., $\max { g(A) - \ell(A) : A \in \mathcal{F} }$, where $g \colon 2\Omega \to \mathbb{R}+$ is a non-monotone submodular function, $\ell \colon 2\Omega \to \mathbb{R}+$ is a normalized modular function and $\mathcal{F}$ is the constraint set. Though the objective function $f := g - \ell$ is still submodular, the fact that $f$ could potentially take on negative values prevents the existing methods for submodular maximization from providing a constant approximation ratio for the regularized submodular maximization problem. To overcome the obstacle, we propose several algorithms which can provide a relatively weak approximation guarantee for maximizing regularized non-monotone submodular functions. More specifically, we propose a continuous greedy algorithm for the relaxation of maximizing $g - \ell$ subject to a matroid constraint. Then, the pipage rounding procedure can produce an integral solution $S$ such that $\mathbb{E} [g(S) - \ell(S)] \geq e{-1}g(OPT) - \ell(OPT) - O(\epsilon)$. Moreover, we present a much faster algorithm for maximizing $g - \ell$ subject to a cardinality constraint, which can output a solution $S$ with $\mathbb{E} [g(S) - \ell(S)] \geq (e{-1} - \epsilon) g(OPT) - \ell(OPT)$ using $O(\frac{n}{\epsilon2} \ln \frac 1\epsilon)$ value oracle queries. We also consider the unconstrained maximization problem and give an algorithm which can return a solution $S$ with $\mathbb{E} [g(S) - \ell(S)] \geq e{-1} g(OPT) - \ell(OPT)$ using $O(n)$ value oracle queries.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.