Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MORE: Simultaneous Multi-View 3D Object Recognition and Pose Estimation (2103.09863v3)

Published 17 Mar 2021 in cs.RO

Abstract: Simultaneous object recognition and pose estimation are two key functionalities for robots to safely interact with humans as well as environments. Although both object recognition and pose estimation use visual input, most state-of-the-art tackles them as two separate problems since the former needs a view-invariant representation while object pose estimation necessitates a view-dependent description. Nowadays, multi-view Convolutional Neural Network (MVCNN) approaches show state-of-the-art classification performance. Although MVCNN object recognition has been widely explored, there has been very little research on multi-view object pose estimation methods, and even less on addressing these two problems simultaneously. The pose of virtual cameras in MVCNN methods is often predefined in advance, leading to bound the application of such approaches. In this paper, we propose an approach capable of handling object recognition and pose estimation simultaneously. In particular, we develop a deep object-agnostic entropy estimation model, capable of predicting the best viewpoints of a given 3D object. The obtained views of the object are then fed to the network to simultaneously predict the pose and category label of the target object. Experimental results showed that the views obtained from such positions are descriptive enough to achieve a good accuracy score. Furthermore, we designed a real-life serve drink scenario to demonstrate how well the proposed approach worked in real robot tasks. Code is available online at: github.com/SubhadityaMukherjee/more_mvcnn

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.