Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convergent Finite Difference Methods for Fully Nonlinear Elliptic Equations in Three Dimensions (2103.09861v1)

Published 17 Mar 2021 in math.NA and cs.NA

Abstract: We introduce a generalized finite difference method for solving a large range of fully nonlinear elliptic partial differential equations in three dimensions. Methods are based on Cartesian grids, augmented by additional points carefully placed along the boundary at high resolution. We introduce and analyze a least-squares approach to building consistent, monotone approximations of second directional derivatives on these grids. We then show how to efficiently approximate functions of the eigenvalues of the Hessian through a multi-level discretization of orthogonal coordinate frames in $\mathbb{R}3$. The resulting schemes are monotone and fit within many recently developed convergence frameworks for fully nonlinear elliptic equations including non-classical Dirichlet problems that admit discontinuous solutions, Monge-Amp`ere type equations in optimal transport, and eigenvalue problems involving nonlinear elliptic operators. Computational examples demonstrate the success of this method on a wide range of challenging examples.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.