Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Color image segmentation based on a convex K-means approach (2103.09565v1)

Published 17 Mar 2021 in eess.IV

Abstract: Image segmentation is a fundamental and challenging task in image processing and computer vision. The color image segmentation is attracting more attention due to the color image provides more information than the gray image. In this paper, we propose a variational model based on a convex K-means approach to segment color images. The proposed variational method uses a combination of $l_1$ and $l_2$ regularizers to maintain edge information of objects in images while overcoming the staircase effect. Meanwhile, our one-stage strategy is an improved version based on the smoothing and thresholding strategy, which contributes to improving the accuracy of segmentation. The proposed method performs the following steps. First, we specify the color set which can be determined by human or the K-means method. Second, we use a variational model to obtain the most appropriate color for each pixel from the color set via convex relaxation and lifting. The Chambolle-Pock algorithm and simplex projection are applied to solve the variational model effectively. Experimental results and comparison analysis demonstrate the effectiveness and robustness of our method.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.