Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Escaping Saddle Points in Distributed Newton's Method with Communication Efficiency and Byzantine Resilience (2103.09424v2)

Published 17 Mar 2021 in cs.DC, cs.LG, math.OC, and stat.ML

Abstract: The problem of saddle-point avoidance for non-convex optimization is quite challenging in large scale distributed learning frameworks, such as Federated Learning, especially in the presence of Byzantine workers. The celebrated cubic-regularized Newton method of \cite{nest} is one of the most elegant ways to avoid saddle-points in the standard centralized (non-distributed) setup. In this paper, we extend the cubic-regularized Newton method to a distributed framework and simultaneously address several practical challenges like communication bottleneck and Byzantine attacks. Note that the issue of saddle-point avoidance becomes more crucial in the presence of Byzantine machines since rogue machines may create \emph{fake local minima} near the saddle-points of the loss function, also known as the saddle-point attack. Being a second order algorithm, our iteration complexity is much lower than the first order counterparts. Furthermore we use compression (or sparsification) techniques like $\delta$-approximate compression for communication efficiency. We obtain theoretical guarantees for our proposed scheme under several settings including approximate (sub-sampled) gradients and Hessians. Moreover, we validate our theoretical findings with experiments using standard datasets and several types of Byzantine attacks, and obtain an improvement of $25\%$ with respect to first order methods in iteration complexity.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.