Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Hate, Obscenity, and Insults: Measuring the Exposure of Children to Inappropriate Comments in YouTube (2103.09050v1)

Published 3 Mar 2021 in cs.CY and cs.LG

Abstract: Social media has become an essential part of the daily routines of children and adolescents. Moreover, enormous efforts have been made to ensure the psychological and emotional well-being of young users as well as their safety when interacting with various social media platforms. In this paper, we investigate the exposure of those users to inappropriate comments posted on YouTube videos targeting this demographic. We collected a large-scale dataset of approximately four million records and studied the presence of five age-inappropriate categories and the amount of exposure to each category. Using natural language processing and machine learning techniques, we constructed ensemble classifiers that achieved high accuracy in detecting inappropriate comments. Our results show a large percentage of worrisome comments with inappropriate content: we found 11% of the comments on children's videos to be toxic, highlighting the importance of monitoring comments, particularly on children's platforms.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.