Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Robust Speaker Verification with Target Speaker Enhancement (2103.08781v1)

Published 16 Mar 2021 in eess.AS

Abstract: This paper proposes the target speaker enhancement based speaker verification network (TASE-SVNet), an all neural model that couples target speaker enhancement and speaker embedding extraction for robust speaker verification (SV). Specifically, an enroLLMent speaker conditioned speech enhancement module is employed as the front-end for extracting target speaker from its mixture with interfering speakers and environmental noises. Compared with the conventional target speaker enhancement models, nontarget speaker/interference suppression should draw additional attention for SV. Therefore, an effective nontarget speaker sampling strategy is explored. To improve speaker embedding extraction with a light-weighted model, a teacher-student (T/S) training is proposed to distill speaker discriminative information from large models to small models. Iterative inference is investigated to address the noisy speaker enroLLMent problem. We evaluate the proposed method on two SV tasks, i.e., one heavily overlapped speech and the other one with comprehensive noise types in vehicle environments. Experiments show significant and consistent improvements in Equal Error Rate (EER) over the state-of-the-art baselines.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube