Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Compensated Algorithms for the Reciprocal Square Root, the Reciprocal Hypotenuse, and Givens Rotations (2103.08694v2)

Published 23 Feb 2021 in math.NA and cs.NA

Abstract: The reciprocal square root is an important computation for which many very sophisticated algorithms exist (see for example \cite{863046,863031} and the references therein). In this paper we develop a simple differential compensation (much like those developed in \cite{borges}) that can be used to improve the accuracy of a naive calculation. The approach relies on the use of the fused multiply-add (FMA) which is widely available in hardware on a variety of modern computer architectures. We then demonstrate how to combine this approach with a somewhat inaccurate but fast square root free method for estimating the reciprocal square root to get a method that is both fast (in computing environments with a slow square root) and, experimentally, highly accurate. Finally, we show how this same approach can be extended to the reciprocal hypotenuse calculation and, most importantly, to the construction of Givens rotations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.