Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fast Compensated Algorithms for the Reciprocal Square Root, the Reciprocal Hypotenuse, and Givens Rotations (2103.08694v2)

Published 23 Feb 2021 in math.NA and cs.NA

Abstract: The reciprocal square root is an important computation for which many very sophisticated algorithms exist (see for example \cite{863046,863031} and the references therein). In this paper we develop a simple differential compensation (much like those developed in \cite{borges}) that can be used to improve the accuracy of a naive calculation. The approach relies on the use of the fused multiply-add (FMA) which is widely available in hardware on a variety of modern computer architectures. We then demonstrate how to combine this approach with a somewhat inaccurate but fast square root free method for estimating the reciprocal square root to get a method that is both fast (in computing environments with a slow square root) and, experimentally, highly accurate. Finally, we show how this same approach can be extended to the reciprocal hypotenuse calculation and, most importantly, to the construction of Givens rotations.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)