Papers
Topics
Authors
Recent
2000 character limit reached

Autonomous Drone Racing with Deep Reinforcement Learning (2103.08624v2)

Published 15 Mar 2021 in cs.RO and cs.AI

Abstract: In many robotic tasks, such as autonomous drone racing, the goal is to travel through a set of waypoints as fast as possible. A key challenge for this task is planning the time-optimal trajectory, which is typically solved by assuming perfect knowledge of the waypoints to pass in advance. The resulting solution is either highly specialized for a single-track layout, or suboptimal due to simplifying assumptions about the platform dynamics. In this work, a new approach to near-time-optimal trajectory generation for quadrotors is presented. Leveraging deep reinforcement learning and relative gate observations, our approach can compute near-time-optimal trajectories and adapt the trajectory to environment changes. Our method exhibits computational advantages over approaches based on trajectory optimization for non-trivial track configurations. The proposed approach is evaluated on a set of race tracks in simulation and the real world, achieving speeds of up to 60 km/h with a physical quadrotor.

Citations (132)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.