Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hierarchical forecasting with a top-down alignment of independent level forecasts (2103.08250v4)

Published 15 Mar 2021 in stat.ML, cs.LG, and stat.AP

Abstract: Hierarchical forecasting with intermittent time series is a challenge in both research and empirical studies. Extensive research focuses on improving the accuracy of each hierarchy, especially the intermittent time series at bottom levels. Then hierarchical reconciliation could be used to improve the overall performance further. In this paper, we present a \emph{hierarchical-forecasting-with-alignment} approach that treats the bottom level forecasts as mutable to ensure higher forecasting accuracy on the upper levels of the hierarchy. We employ a pure deep learning forecasting approach N-BEATS for continuous time series at the top levels and a widely used tree-based algorithm LightGBM for the intermittent time series at the bottom level. The \emph{hierarchical-forecasting-with-alignment} approach is a simple yet effective variant of the bottom-up method, accounting for biases that are difficult to observe at the bottom level. It allows suboptimal forecasts at the lower level to retain a higher overall performance. The approach in this empirical study was developed by the first author during the M5 Forecasting Accuracy competition, ranking second place. The method is also business orientated and could benefit for business strategic planning.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube