Papers
Topics
Authors
Recent
2000 character limit reached

Robust MAML: Prioritization task buffer with adaptive learning process for model-agnostic meta-learning (2103.08233v2)

Published 15 Mar 2021 in cs.LG, cs.AI, cs.SY, and eess.SY

Abstract: Model agnostic meta-learning (MAML) is a popular state-of-the-art meta-learning algorithm that provides good weight initialization of a model given a variety of learning tasks. The model initialized by provided weight can be fine-tuned to an unseen task despite only using a small amount of samples and within a few adaptation steps. MAML is simple and versatile but requires costly learning rate tuning and careful design of the task distribution which affects its scalability and generalization. This paper proposes a more robust MAML based on an adaptive learning scheme and a prioritization task buffer(PTB) referred to as Robust MAML (RMAML) for improving scalability of training process and alleviating the problem of distribution mismatch. RMAML uses gradient-based hyper-parameter optimization to automatically find the optimal learning rate and uses the PTB to gradually adjust train-ing task distribution toward testing task distribution over the course of training. Experimental results on meta reinforcement learning environments demonstrate a substantial performance gain as well as being less sensitive to hyper-parameter choice and robust to distribution mismatch.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.