Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Sharp indistinguishability bounds from non-uniform approximations (2103.07842v1)

Published 14 Mar 2021 in cs.CC

Abstract: We study the problem of distinguishing between two symmetric probability distributions over $n$ bits by observing $k$ bits of a sample, subject to the constraint that all $k-1$-wise marginal distributions of the two distributions are identical to each other. Previous works of Bogdanov et al. and of Huang and Viola have established approximately tight results on the maximal statistical distance when $k$ is at most a small constant fraction of $n$ and Naor and Shamir gave a tight bound for all $k$ in the case of distinguishing with the OR function. In this work we provide sharp upper and lower bounds on the maximal statistical distance that holds for all $k$. Upper bounds on the statistical distance have typically been obtained by providing uniform low-degree polynomial approximations to certain higher-degree polynomials; the sharpness and wider applicability of our result stems from the construction of suitable non-uniform approximations.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.