Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sharp indistinguishability bounds from non-uniform approximations (2103.07842v1)

Published 14 Mar 2021 in cs.CC

Abstract: We study the problem of distinguishing between two symmetric probability distributions over $n$ bits by observing $k$ bits of a sample, subject to the constraint that all $k-1$-wise marginal distributions of the two distributions are identical to each other. Previous works of Bogdanov et al. and of Huang and Viola have established approximately tight results on the maximal statistical distance when $k$ is at most a small constant fraction of $n$ and Naor and Shamir gave a tight bound for all $k$ in the case of distinguishing with the OR function. In this work we provide sharp upper and lower bounds on the maximal statistical distance that holds for all $k$. Upper bounds on the statistical distance have typically been obtained by providing uniform low-degree polynomial approximations to certain higher-degree polynomials; the sharpness and wider applicability of our result stems from the construction of suitable non-uniform approximations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.