Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Network Environment Design for Autonomous Cyberdefense (2103.07583v1)

Published 13 Mar 2021 in cs.CR

Abstract: Reinforcement learning (RL) has been demonstrated suitable to develop agents that play complex games with human-level performance. However, it is not understood how to effectively use RL to perform cybersecurity tasks. To develop such understanding, it is necessary to develop RL agents using simulation and emulation systems allowing researchers to model a broad class of realistic threats and network conditions. Demonstrating that a specific RL algorithm can be effective for defending a network under certain conditions may not necessarily give insight about the performance of the algorithm when the threats, network conditions, and security goals change. This paper introduces a novel approach for network environment design and a software framework to address the fundamental problem that network defense cannot be defined as a single game with a simple set of fixed rules. We show how our approach is necessary to facilitate the development of RL network defenders that are robust against attacks aimed at the agent's learning. Our framework enables the development and simulation of adversaries with sophisticated behavior that includes poisoning and evasion attacks on RL network defenders.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.