Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Privacy Regularization: Joint Privacy-Utility Optimization in Language Models (2103.07567v2)

Published 12 Mar 2021 in cs.LG, cs.CL, and cs.CR

Abstract: Neural LLMs are known to have a high capacity for memorization of training samples. This may have serious privacy implications when training models on user content such as email correspondence. Differential privacy (DP), a popular choice to train models with privacy guarantees, comes with significant costs in terms of utility degradation and disparate impact on subgroups of users. In this work, we introduce two privacy-preserving regularization methods for training LLMs that enable joint optimization of utility and privacy through (1) the use of a discriminator and (2) the inclusion of a triplet-loss term. We compare our methods with DP through extensive evaluation. We show the advantages of our regularizers with favorable utility-privacy trade-off, faster training with the ability to tap into existing optimization approaches, and ensuring uniform treatment of under-represented subgroups.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.