Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Mixing of Markov Chains: Coupling, Spectral Independence, and Entropy Factorization (2103.07459v1)

Published 12 Mar 2021 in math.PR, cs.DM, cs.DS, math-ph, math.FA, and math.MP

Abstract: For general spin systems, we prove that a contractive coupling for any local Markov chain implies optimal bounds on the mixing time and the modified log-Sobolev constant for a large class of Markov chains including the Glauber dynamics, arbitrary heat-bath block dynamics, and the Swendsen-Wang dynamics. This reveals a novel connection between probabilistic techniques for bounding the convergence to stationarity and analytic tools for analyzing the decay of relative entropy. As a corollary of our general results, we obtain $O(n\log{n})$ mixing time and $\Omega(1/n)$ modified log-Sobolev constant of the Glauber dynamics for sampling random $q$-colorings of an $n$-vertex graph with constant maximum degree $\Delta$ when $q > (11/6 - \epsilon_0)\Delta$ for some fixed $\epsilon_0>0$. We also obtain $O(\log{n})$ mixing time and $\Omega(1)$ modified log-Sobolev constant of the Swendsen-Wang dynamics for the ferromagnetic Ising model on an $n$-vertex graph of constant maximum degree when the parameters of the system lie in the tree uniqueness region. At the heart of our results are new techniques for establishing spectral independence of the spin system and block factorization of the relative entropy. On one hand we prove that a contractive coupling of a local Markov chain implies spectral independence of the Gibbs distribution. On the other hand we show that spectral independence implies factorization of entropy for arbitrary blocks, establishing optimal bounds on the modified log-Sobolev constant of the corresponding block dynamics.

Citations (70)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.