Papers
Topics
Authors
Recent
2000 character limit reached

Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator (2103.07289v1)

Published 12 Mar 2021 in cs.CV

Abstract: In one-shot NAS, sub-networks need to be searched from the supernet to meet different hardware constraints. However, the search cost is high and $N$ times of searches are needed for $N$ different constraints. In this work, we propose a novel search strategy called architecture generator to search sub-networks by generating them, so that the search process can be much more efficient and flexible. With the trained architecture generator, given target hardware constraints as the input, $N$ good architectures can be generated for $N$ constraints by just one forward pass without re-searching and supernet retraining. Moreover, we propose a novel single-path supernet, called unified supernet, to further improve search efficiency and reduce GPU memory consumption of the architecture generator. With the architecture generator and the unified supernet, we propose a flexible and efficient one-shot NAS framework, called Searching by Generating NAS (SGNAS). With the pre-trained supernt, the search time of SGNAS for $N$ different hardware constraints is only 5 GPU hours, which is $4N$ times faster than previous SOTA single-path methods. After training from scratch, the top1-accuracy of SGNAS on ImageNet is 77.1%, which is comparable with the SOTAs. The code is available at: https://github.com/eric8607242/SGNAS.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.