Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Risk-taking Broker Model to Optimise User Requests placement on On-demand and Contract VMs (2103.07133v1)

Published 12 Mar 2021 in cs.DC, cs.SY, and eess.SY

Abstract: Cloud providers offer end-users various pricing schemes to allow them to tailor VMs to their needs, e.g., a pay-as-you-go billing scheme, called \textit{on-demand}, and a discounted contract scheme, called \textit{reserved instances}. This paper presents a cloud broker which offers users both the flexibility of on-demand instances and some level of discounts found in reserved instances. The broker employs a buy-low-and-sell-high strategy that places user requests into a resource pool of pre-purchased discounted cloud resources. By analysing user request time-series data, the broker takes a risk-oriented approach to dynamically adjust the resource pool. This approach does not require a training process which is useful at processing the large data stream. The broker is evaluated with high-frequency real cloud datasets from Alibaba. The results show that the overall profit of the broker is close to the theoretical optimal scenario where user requests can be perfectly predicted.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.