Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Risk-taking Broker Model to Optimise User Requests placement on On-demand and Contract VMs (2103.07133v1)

Published 12 Mar 2021 in cs.DC, cs.SY, and eess.SY

Abstract: Cloud providers offer end-users various pricing schemes to allow them to tailor VMs to their needs, e.g., a pay-as-you-go billing scheme, called \textit{on-demand}, and a discounted contract scheme, called \textit{reserved instances}. This paper presents a cloud broker which offers users both the flexibility of on-demand instances and some level of discounts found in reserved instances. The broker employs a buy-low-and-sell-high strategy that places user requests into a resource pool of pre-purchased discounted cloud resources. By analysing user request time-series data, the broker takes a risk-oriented approach to dynamically adjust the resource pool. This approach does not require a training process which is useful at processing the large data stream. The broker is evaluated with high-frequency real cloud datasets from Alibaba. The results show that the overall profit of the broker is close to the theoretical optimal scenario where user requests can be perfectly predicted.

Summary

We haven't generated a summary for this paper yet.