Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Robust Lower Bounds for Graph Problems in the Blackboard Model of Communication (2103.07027v1)

Published 12 Mar 2021 in cs.DS and cs.DC

Abstract: We give lower bounds on the communication complexity of graph problems in the multi-party blackboard model. In this model, the edges of an $n$-vertex input graph are partitioned among $k$ parties, who communicate solely by writing messages on a shared blackboard that is visible to every party. We show that any non-trivial graph problem on $n$-vertex graphs has blackboard communication complexity $\Omega(n)$ bits, even if the edges of the input graph are randomly assigned to the $k$ parties. We say that a graph problem is non-trivial if the output cannot be computed in a model where every party holds at most one edge and no communication is allowed. Our lower bound thus holds for essentially all key graph problems relevant to distributed computing, including Maximal Independent Set (MIS), Maximal Matching, ($\Delta+1$)-coloring, and Dominating Set. In many cases, e.g., MIS, Maximal Matching, and $(\Delta+1)$-coloring, our lower bounds are optimal, up to poly-logarithmic factors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.