Papers
Topics
Authors
Recent
2000 character limit reached

A Vision Based Deep Reinforcement Learning Algorithm for UAV Obstacle Avoidance (2103.06403v1)

Published 11 Mar 2021 in cs.AI, cs.CV, and cs.RO

Abstract: Integration of reinforcement learning with unmanned aerial vehicles (UAVs) to achieve autonomous flight has been an active research area in recent years. An important part focuses on obstacle detection and avoidance for UAVs navigating through an environment. Exploration in an unseen environment can be tackled with Deep Q-Network (DQN). However, value exploration with uniform sampling of actions may lead to redundant states, where often the environments inherently bear sparse rewards. To resolve this, we present two techniques for improving exploration for UAV obstacle avoidance. The first is a convergence-based approach that uses convergence error to iterate through unexplored actions and temporal threshold to balance exploration and exploitation. The second is a guidance-based approach using a Domain Network which uses a Gaussian mixture distribution to compare previously seen states to a predicted next state in order to select the next action. Performance and evaluation of these approaches were implemented in multiple 3-D simulation environments, with variation in complexity. The proposed approach demonstrates a two-fold improvement in average rewards compared to state of the art.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.