Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PANTHER: Perception-Aware Trajectory Planner in Dynamic Environments (2103.06372v3)

Published 10 Mar 2021 in cs.RO

Abstract: This paper presents PANTHER, a real-time perception-aware (PA) trajectory planner for multirotor-UAVs (Unmanned Aerial Vehicles) in dynamic environments. PANTHER plans trajectories that avoid dynamic obstacles while also keeping them in the sensor field of view (FOV) and minimizing the blur to aid in object tracking. The rotation and translation of the UAV are jointly optimized, which allows PANTHER to fully exploit the differential flatness of multirotors to maximize the PA objective. Real-time performance is achieved by implicitly imposing the underactuated dynamics of the UAV through the Hopf fibration. PANTHER is able to keep the obstacles inside the FOV 7.9 and 1.5 times more than non-PA approaches and PA approaches that decouple translation and yaw, respectively. The projected velocity (and hence the blur) is reduced by 18% and 34%, respectively. This leads to average success rates three times larger than state-of-the-art approaches in multi-obstacle avoidance scenarios. The MINVO basis is used to impose low-conservative collision avoidance constraints in position and velocity space. Finally, extensive hardware experiments in unknown dynamic environments with all the computation running onboard are presented, with velocities of up to 5.8 m/s, and with relative velocities (with respect to the obstacles) of up to 6.3 m/s. The only sensors used are an IMU, a forward-facing depth camera, and a downward-facing monocular camera.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com