Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Dual Implementation of Collision-Avoidance Constraints in Path-Following MPC for Underactuated Surface Vessels (2103.06085v2)

Published 10 Mar 2021 in eess.SY, cs.RO, cs.SY, and math.OC

Abstract: A path-following collision-avoidance model predictive control (MPC) method is proposed which approximates obstacle shapes as convex polygons. Collision-avoidance is ensured by means of the signed distance function which is calculated efficiently as part of the MPC problem by making use of a dual formulation. The overall MPC problem can be solved by standard nonlinear programming (NLP) solvers. The dual signed distance formulation yields, besides the (dual) collision-avoidance constraints, norm, and consistency constraints. A novel approach is presented that combines the arising norm equality with the dual collision-avoidance inequality constraints to yield an alternative formulation reduced in complexity. Moving obstacles are considered using separate convex sets of linearly predicted obstacle positions in the dual problem. The theoretical findings and simplifications are compared with the often-used ellipsoidal obstacle formulation and are analyzed with regard to efficiency by the example of a simulated path-following autonomous surface vessel during a realistic maneuver and AIS obstacle data from the Kiel bay area.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.