Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

RL-CSDia: Representation Learning of Computer Science Diagrams (2103.05900v1)

Published 10 Mar 2021 in cs.CV and cs.AI

Abstract: Recent studies on computer vision mainly focus on natural images that express real-world scenes. They achieve outstanding performance on diverse tasks such as visual question answering. Diagram is a special form of visual expression that frequently appears in the education field and is of great significance for learners to understand multimodal knowledge. Current research on diagrams preliminarily focuses on natural disciplines such as Biology and Geography, whose expressions are still similar to natural images. Another type of diagrams such as from Computer Science is composed of graphics containing complex topologies and relations, and research on this type of diagrams is still blank. The main challenges of graphic diagrams understanding are the rarity of data and the confusion of semantics, which are mainly reflected in the diversity of expressions. In this paper, we construct a novel dataset of graphic diagrams named Computer Science Diagrams (CSDia). It contains more than 1,200 diagrams and exhaustive annotations of objects and relations. Considering the visual noises caused by the various expressions in diagrams, we introduce the topology of diagrams to parse topological structure. After that, we propose Diagram Parsing Net (DPN) to represent the diagram from three branches: topology, visual feature, and text, and apply the model to the diagram classification task to evaluate the ability of diagrams understanding. The results show the effectiveness of the proposed DPN on diagrams understanding.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube