Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Best of Both Worlds: Robust Accented Speech Recognition with Adversarial Transfer Learning (2103.05834v1)

Published 10 Mar 2021 in eess.AS

Abstract: Training deep neural networks for automatic speech recognition (ASR) requires large amounts of transcribed speech. This becomes a bottleneck for training robust models for accented speech which typically contains high variability in pronunciation and other semantics, since obtaining large amounts of annotated accented data is both tedious and costly. Often, we only have access to large amounts of unannotated speech from different accents. In this work, we leverage this unannotated data to provide semantic regularization to an ASR model that has been trained only on one accent, to improve its performance for multiple accents. We propose Accent Pre-Training (Acc-PT), a semi-supervised training strategy that combines transfer learning and adversarial training. Our approach improves the performance of a state-of-the-art ASR model by 33% on average over the baseline across multiple accents, training only on annotated samples from one standard accent, and as little as 105 minutes of unannotated speech from a target accent.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube