Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Continual Developmental Neurosimulation Using Embodied Computational Agents (2103.05753v3)

Published 7 Mar 2021 in q-bio.NC, cs.AI, and cs.NE

Abstract: There is much to learn through synthesis of Developmental Biology, Cognitive Science and Computational Modeling. Our path forward involves a design for developmentally-inspired learning agents based on Braitenberg Vehicles. Continual developmental neurosimulation allows us to consider the role of developmental trajectories in bridging the related phenomena of nervous system morphogenesis, developmental learning, and plasticity. Being closely tied to continual learning, our approach is tightly integrated with developmental embodiment, and can be implemented using a type of agent called developmental Braitenberg Vehicles (dBVs). dBVs begin their lives as a set of undefined structures that transform into agent-based systems including a body, sensors, effectors, and nervous system. This phenotype is characterized in terms of developmental timing: with distinct morphogenetic, critical, and acquisition (developmental learning) periods. We further propose that network morphogenesis can be accomplished using a genetic algorithmic approach, while developmental learning can be implemented using a number of computational methodologies. This approach provides a framework for adaptive agent behavior that might result from a developmental approach: namely by exploiting critical periods or growth and acquisition, an explicitly embodied network architecture, and a distinction between the assembly of neuronal networks and active learning on these networks. In conclusion, we will consider agent learning and development at different timescales, from very short (<100ms) intervals to long-term evolution. The development, evolution, and learning in an embodied agent-based approach is key to an integrative view of biologically-inspired intelligence.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: