Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Beyond Nyströmformer -- Approximation of self-attention by Spectral Shifting (2103.05638v1)

Published 9 Mar 2021 in cs.LG and cs.CL

Abstract: Transformer is a powerful tool for many natural language tasks which is based on self-attention, a mechanism that encodes the dependence of other tokens on each specific token, but the computation of self-attention is a bottleneck due to its quadratic time complexity. There are various approaches to reduce the time complexity and approximation of matrix is one such. In Nystr\"omformer, the authors used Nystr\"om based method for approximation of softmax. The Nystr\"om method generates a fast approximation to any large-scale symmetric positive semidefinite (SPSD) matrix using only a few columns of the SPSD matrix. However, since the Nystr\"om approximation is low-rank when the spectrum of the SPSD matrix decays slowly, the Nystr\"om approximation is of low accuracy. Here an alternative method is proposed for approximation which has a much stronger error bound than the Nystr\"om method. The time complexity of this same as Nystr\"omformer which is $O\left({n}\right)$.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)