Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Optimal Pricing with a Single Point (2103.05611v2)

Published 9 Mar 2021 in cs.GT, cs.IT, and math.IT

Abstract: We study the following fundamental data-driven pricing problem. How can/should a decision-maker price its product based on data at a single historical price? How valuable is such data? We consider a decision-maker who optimizes over (potentially randomized) pricing policies to maximize the worst-case ratio of the revenue she can garner compared to an oracle with full knowledge of the distribution of values, when the latter is only assumed to belong to a broad non-parametric set. In particular, our framework applies to the widely used regular and monotone non-decreasing hazard rate (mhr) classes of distributions. For settings where the seller knows the exact probability of sale associated with one historical price or only a confidence interval for it, we fully characterize optimal performance and near-optimal pricing algorithms that adjust to the information at hand. The framework we develop is general and allows to characterize optimal performance for deterministic or more general randomized mechanisms, and leads to fundamental novel insights on the value of data for pricing. As examples, against mhr distributions, we show that it is possible to guarantee $85\%$ of oracle performance if one knows that half of the customers have bought at the historical price, and if only $1\%$ of the customers bought, it still possible to guarantee $51\%$ of oracle performance.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.