Papers
Topics
Authors
Recent
2000 character limit reached

Differentially Private Imaging via Latent Space Manipulation (2103.05472v2)

Published 8 Mar 2021 in cs.CV and cs.CR

Abstract: There is growing concern about image privacy due to the popularity of social media and photo devices, along with increasing use of face recognition systems. However, established image de-identification techniques are either too subject to re-identification, produce photos that are insufficiently realistic, or both. To tackle this, we present a novel approach for image obfuscation by manipulating latent spaces of an unconditionally trained generative model that is able to synthesize photo-realistic facial images of high resolution. This manipulation is done in a way that satisfies the formal privacy standard of local differential privacy. To our knowledge, this is the first approach to image privacy that satisfies $\varepsilon$-differential privacy \emph{for the person.}

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.