Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rudder: A Cross Lingual Video and Text Retrieval Dataset (2103.05457v1)

Published 9 Mar 2021 in cs.IR

Abstract: Video retrieval using natural language queries requires learning semantically meaningful joint embeddings between the text and the audio-visual input. Often, such joint embeddings are learnt using pairwise (or triplet) contrastive loss objectives which cannot give enough attention to 'difficult-to-retrieve' samples during training. This problem is especially pronounced in data-scarce settings where the data is relatively small (10% of the large scale MSR-VTT) to cover the rather complex audio-visual embedding space. In this context, we introduce Rudder - a multilingual video-text retrieval dataset that includes audio and textual captions in Marathi, Hindi, Tamil, Kannada, Malayalam and Telugu. Furthermore, we propose to compensate for data scarcity by using domain knowledge to augment supervision. To this end, in addition to the conventional three samples of a triplet (anchor, positive, and negative), we introduce a fourth term - a partial - to define a differential margin based partialorder loss. The partials are heuristically sampled such that they semantically lie in the overlap zone between the positives and the negatives, thereby resulting in broader embedding coverage. Our proposals consistently outperform the conventional max-margin and triplet losses and improve the state-of-the-art on MSR-VTT and DiDeMO datasets. We report benchmark results on Rudder while also observing significant gains using the proposed partial order loss, especially when the language specific retrieval models are jointly trained by availing the cross-lingual alignment across the language-specific datasets.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.