Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Streaming Hypergraph Partitioning Algorithms on Limited Memory Environments (2103.05394v1)

Published 9 Mar 2021 in cs.DS and cs.DC

Abstract: Many well-known, real-world problems involve dynamic data which describe the relationship among the entities. Hypergraphs are powerful combinatorial structures that are frequently used to model such data. For many of today's data-centric applications, this data is streaming; new items arrive continuously, and the data grows with time. With paradigms such as Internet of Things and Edge Computing, such applications become more natural and more practical. In this work, we assume a streaming model where the data is modeled as a hypergraph, which is generated at the edge. This data then partitioned and sent to remote nodes via an algorithm running on a memory-restricted device such as a single board computer. Such a partitioning is usually performed by taking a connectivity metric into account to minimize the communication cost of later analyses that will be performed in a distributed fashion. Although there are many offline tools that can partition static hypergraphs excellently, algorithms for the streaming settings are rare. We analyze a well-known algorithm from the literature and significantly improve its running time by altering its inner data structure. For instance, on a medium-scale hypergraph, the new algorithm reduces the runtime from 17800 seconds to 10 seconds. We then propose sketch- and hash-based algorithms, as well as ones that can leverage extra memory to store a small portion of the data to enable the refinement of partitioning when possible. We experimentally analyze the performance of these algorithms and report their run times, connectivity metric scores, and memory uses on a high-end server and four different single-board computer architectures.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube