Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

CEQE: Contextualized Embeddings for Query Expansion (2103.05256v1)

Published 9 Mar 2021 in cs.IR

Abstract: In this work we leverage recent advances in context-sensitive LLMs to improve the task of query expansion. Contextualized word representation models, such as ELMo and BERT, are rapidly replacing static embedding models. We propose a new model, Contextualized Embeddings for Query Expansion (CEQE), that utilizes query-focused contextualized embedding vectors. We study the behavior of contextual representations generated for query expansion in ad-hoc document retrieval. We conduct our experiments on probabilistic retrieval models as well as in combination with neural ranking models. We evaluate CEQE on two standard TREC collections: Robust and Deep Learning. We find that CEQE outperforms static embedding-based expansion methods on multiple collections (by up to 18% on Robust and 31% on Deep Learning on average precision) and also improves over proven probabilistic pseudo-relevance feedback (PRF) models. We further find that multiple passes of expansion and reranking result in continued gains in effectiveness with CEQE-based approaches outperforming other approaches. The final model incorporating neural and CEQE-based expansion score achieves gains of up to 5% in P@20 and 2% in AP on Robust over the state-of-the-art transformer-based re-ranking model, Birch.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.