Papers
Topics
Authors
Recent
2000 character limit reached

A Parallelizable Lattice Rescoring Strategy with Neural Language Models (2103.05081v1)

Published 8 Mar 2021 in eess.AS, cs.CL, and cs.SD

Abstract: This paper proposes a parallel computation strategy and a posterior-based lattice expansion algorithm for efficient lattice rescoring with neural LMs for automatic speech recognition. First, lattices from first-pass decoding are expanded by the proposed posterior-based lattice expansion algorithm. Second, each expanded lattice is converted into a minimal list of hypotheses that covers every arc. Each hypothesis is constrained to be the best path for at least one arc it includes. For each lattice, the neural LM scores of the minimal list are computed in parallel and are then integrated back to the lattice in the rescoring stage. Experiments on the Switchboard dataset show that the proposed rescoring strategy obtains comparable recognition performance and generates more compact lattices than a competitive baseline method. Furthermore, the parallel rescoring method offers more flexibility by simplifying the integration of PyTorch-trained neural LMs for lattice rescoring with Kaldi.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.