Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Use square root affinity to regress labels in semantic segmentation (2103.04990v1)

Published 7 Mar 2021 in cs.CV

Abstract: Semantic segmentation is a basic but non-trivial task in computer vision. Many previous work focus on utilizing affinity patterns to enhance segmentation networks. Most of these studies use the affinity matrix as a kind of feature fusion weights, which is part of modules embedded in the network, such as attention models and non-local models. In this paper, we associate affinity matrix with labels, exploiting the affinity in a supervised way. Specifically, we utilize the label to generate a multi-scale label affinity matrix as a structural supervision, and we use a square root kernel to compute a non-local affinity matrix on output layers. With such two affinities, we define a novel loss called Affinity Regression loss (AR loss), which can be an auxiliary loss providing pair-wise similarity penalty. Our model is easy to train and adds little computational burden without run-time inference. Extensive experiments on NYUv2 dataset and Cityscapes dataset demonstrate that our proposed method is sufficient in promoting semantic segmentation networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.