Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Deep Model Intellectual Property Protection via Deep Watermarking (2103.04980v1)

Published 8 Mar 2021 in cs.CV and cs.CR

Abstract: Despite the tremendous success, deep neural networks are exposed to serious IP infringement risks. Given a target deep model, if the attacker knows its full information, it can be easily stolen by fine-tuning. Even if only its output is accessible, a surrogate model can be trained through student-teacher learning by generating many input-output training pairs. Therefore, deep model IP protection is important and necessary. However, it is still seriously under-researched. In this work, we propose a new model watermarking framework for protecting deep networks trained for low-level computer vision or image processing tasks. Specifically, a special task-agnostic barrier is added after the target model, which embeds a unified and invisible watermark into its outputs. When the attacker trains one surrogate model by using the input-output pairs of the barrier target model, the hidden watermark will be learned and extracted afterwards. To enable watermarks from binary bits to high-resolution images, a deep invisible watermarking mechanism is designed. By jointly training the target model and watermark embedding, the extra barrier can even be absorbed into the target model. Through extensive experiments, we demonstrate the robustness of the proposed framework, which can resist attacks with different network structures and objective functions.

Citations (95)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.