Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reducing quantum annealing biases for solving the graph partitioning problem (2103.04963v1)

Published 8 Mar 2021 in quant-ph and cs.ET

Abstract: Quantum annealers offer an efficient way to compute high quality solutions of NP-hard problems when expressed in a QUBO (quadratic unconstrained binary optimization) or an Ising form. This is done by mapping a problem onto the physical qubits and couplers of the quantum chip, from which a solution is read after a process called quantum annealing. However, this process is subject to multiple sources of biases, including poor calibration, leakage between adjacent qubits, control biases, etc., which might negatively influence the quality of the annealing results. In this work, we aim at mitigating the effect of such biases for solving constrained optimization problems, by offering a two-step method, and apply it to Graph Partitioning. In the first step, we measure and reduce any biases that result from implementing the constraints of the problem. In the second, we add the objective function to the resulting bias-corrected implementation of the constraints, and send the problem to the quantum annealer. We apply this concept to Graph Partitioning, an important NP-hard problem, which asks to find a partition of the vertices of a graph that is balanced (the constraint) and minimizes the cut size (the objective). We first quantify the bias of the implementation of the constraint on the quantum annealer, that is, we require, in an unbiased implementation, that any two vertices have the same likelihood of being assigned to the same or to different parts of the partition. We then propose an iterative method to correct any such biases. We demonstrate that, after adding the objective, solving the resulting bias-corrected Ising problem on the quantum annealer results in a higher solution accuracy.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.