Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CDLNet: Robust and Interpretable Denoising Through Deep Convolutional Dictionary Learning (2103.04779v1)

Published 5 Mar 2021 in eess.IV and cs.LG

Abstract: Deep learning based methods hold state-of-the-art results in image denoising, but remain difficult to interpret due to their construction from poorly understood building blocks such as batch-normalization, residual learning, and feature domain processing. Unrolled optimization networks propose an interpretable alternative to constructing deep neural networks by deriving their architecture from classical iterative optimization methods, without use of tricks from the standard deep learning tool-box. So far, such methods have demonstrated performance close to that of state-of-the-art models while using their interpretable construction to achieve a comparably low learned parameter count. In this work, we propose an unrolled convolutional dictionary learning network (CDLNet) and demonstrate its competitive denoising performance in both low and high parameter count regimes. Specifically, we show that the proposed model outperforms the state-of-the-art denoising models when scaled to similar parameter count. In addition, we leverage the model's interpretable construction to propose an augmentation of the network's thresholds that enables state-of-the-art blind denoising performance and near-perfect generalization on noise-levels unseen during training.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube