Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Fully Polynomial Parameterized Algorithm for Counting the Number of Reachable Vertices in a Digraph (2103.04595v2)

Published 8 Mar 2021 in cs.DS

Abstract: We consider the problem of counting the number of vertices reachable from each vertex in a digraph $G$, which is equal to computing all the out-degrees of the transitive closure of $G$. The current (theoretically) fastest algorithms run in quadratic time; however, Borassi has shown that this probl m is not solvable in truly subquadratic time unless the Strong Exponential Time Hypothesis fails [Inf. Process. Lett., 116(10):628--630, 2016]. In this paper, we present an $\mathcal{O}(f3n)$-time exact algorithm, where $n$ is the number of vertices in $G$ and $f$ is the feedback edge number of $G$. Our algorithm thus runs in truly subquadratic time for digraphs of $f=\mathcal{O}(n{\frac{1}{3}-\epsilon})$ for any $\epsilon > 0$, i.e., the number of edges is $n$ plus $\mathcal{O}(n{\frac{1}{3}-\epsilon})$, and is fully polynomial fixed parameter tractable, the notion of which was first introduced by Fomin, Lokshtanov, Pilipczuk, Saurabh, and Wrochna [ACM Trans. Algorithms, 14(3):34:1--34:45, 2018]. We also show that the same result holds for vertex-weighted digraphs, where the task is to compute the total weights of vertices reachable from each vertex.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.