Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

No Weighted-Regret Learning in Adversarial Bandits with Delays (2103.04550v2)

Published 8 Mar 2021 in cs.LG and cs.GT

Abstract: Consider a scenario where a player chooses an action in each round $t$ out of $T$ rounds and observes the incurred cost after a delay of $d_{t}$ rounds. The cost functions and the delay sequence are chosen by an adversary. We show that in a non-cooperative game, the expected weighted ergodic distribution of play converges to the set of coarse correlated equilibria if players use algorithms that have "no weighted-regret" in the above scenario, even if they have linear regret due to too large delays. For a two-player zero-sum game, we show that no weighted-regret is sufficient for the weighted ergodic average of play to converge to the set of Nash equilibria. We prove that the FKM algorithm with $n$ dimensions achieves an expected regret of $O\left(nT{\frac{3}{4}}+\sqrt{n}T{\frac{1}{3}}D{\frac{1}{3}}\right)$ and the EXP3 algorithm with $K$ arms achieves an expected regret of $O\left(\sqrt{\log K\left(KT+D\right)}\right)$ even when $D=\sum_{t=1}{T}d_{t}$ and $T$ are unknown. These bounds use a novel doubling trick that, under mild assumptions, provably retains the regret bound for when $D$ and $T$ are known. Using these bounds, we show that FKM and EXP3 have no weighted-regret even for $d_{t}=O\left(t\log t\right)$. Therefore, algorithms with no weighted-regret can be used to approximate a CCE of a finite or convex unknown game that can only be simulated with bandit feedback, even if the simulation involves significant delays.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.