Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Toward Semi-Automatic Misconception Discovery Using Code Embeddings (2103.04448v1)

Published 7 Mar 2021 in cs.LG, cs.CY, and cs.SE

Abstract: Understanding students' misconceptions is important for effective teaching and assessment. However, discovering such misconceptions manually can be time-consuming and laborious. Automated misconception discovery can address these challenges by highlighting patterns in student data, which domain experts can then inspect to identify misconceptions. In this work, we present a novel method for the semi-automated discovery of problem-specific misconceptions from students' program code in computing courses, using a state-of-the-art code classification model. We trained the model on a block-based programming dataset and used the learned embedding to cluster incorrect student submissions. We found these clusters correspond to specific misconceptions about the problem and would not have been easily discovered with existing approaches. We also discuss potential applications of our approach and how these misconceptions inform domain-specific insights into students' learning processes.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.