Growing a Test Corpus with Bonsai Fuzzing (2103.04388v1)
Abstract: This paper presents a coverage-guided grammar-based fuzzing technique for automatically generating a corpus of concise test inputs for programs such as compilers. We walk-through a case study of a compiler designed for education and the corresponding problem of generating meaningful test cases to provide to students. The prior state-of-the-art solution is a combination of fuzzing and test-case reduction techniques such as variants of delta-debugging. Our key insight is that instead of attempting to minimize convoluted fuzzer-generated test inputs, we can instead grow concise test inputs by construction using a form of iterative deepening. We call this approach Bonsai Fuzzing. Experimental results show that Bonsai Fuzzing can generate test corpora having inputs that are 16--45% smaller in size on average as compared to a fuzz-then-reduce approach, while achieving approximately the same code coverage and fault-detection capability.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.