Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Coding for Matrix Multiplication at Edge Networks (2103.04247v2)

Published 7 Mar 2021 in cs.IT, cs.DC, and math.IT

Abstract: Edge computing is emerging as a new paradigm to allow processing data at the edge of the network, where data is typically generated and collected, by exploiting multiple devices at the edge collectively. However, exploiting the potential of edge computing is challenging mainly due to the heterogeneous and time-varying nature of edge devices. Coded computation, which advocates mixing data in sub-tasks by employing erasure codes and offloading these sub-tasks to other devices for computation, is recently gaining interest, thanks to its higher reliability, smaller delay, and lower communication cost. In this paper, our focus is on characterizing the cost-benefit trade-offs of coded computation for practical edge computing systems, and develop an adaptive coded computation framework. In particular, we focus on matrix multiplication as a computationally intensive task, and develop an adaptive coding for matrix multiplication (ACM2) algorithm by taking into account the heterogeneous and time varying nature of edge devices. ACM2 dynamically selects the best coding policy by taking into account the computing time, storage requirements as well as successful decoding probability. We show that ACM2 improves the task completion delay significantly as compared to existing coded matrix multiplication algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Elahe Vedadi (7 papers)
  2. Hulya Seferoglu (36 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.