Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Morphological Operation Residual Blocks: Enhancing 3D Morphological Feature Representation in Convolutional Neural Networks for Semantic Segmentation of Medical Images (2103.04026v1)

Published 6 Mar 2021 in cs.CV, cs.LG, and eess.IV

Abstract: The shapes and morphology of the organs and tissues are important prior knowledge in medical imaging recognition and segmentation. The morphological operation is a well-known method for morphological feature extraction. As the morphological operation is performed well in hand-crafted image segmentation techniques, it is also promising to design an approach to approximate morphological operation in the convolutional networks. However, using the traditional convolutional neural network as a black-box is usually hard to specify the morphological operation action. Here, we introduced a 3D morphological operation residual block to extract morphological features in end-to-end deep learning models for semantic segmentation. This study proposed a novel network block architecture that embedded the morphological operation as an infinitely strong prior in the convolutional neural network. Several 3D deep learning models with the proposed morphological operation block were built and compared in different medical imaging segmentation tasks. Experimental results showed the proposed network achieved a relatively higher performance in the segmentation tasks comparing with the conventional approach. In conclusion, the novel network block could be easily embedded in traditional networks and efficiently reinforce the deep learning models for medical imaging segmentation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.