Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Coarse reduced model selection for nonlinear state estimation (2103.03985v1)

Published 5 Mar 2021 in math.NA and cs.NA

Abstract: State estimation is the task of approximately reconstructing a solution $u$ of a parametric partial differential equation when the parameter vector $y$ is unknown and the only information is $m$ linear measurements of $u$. In [Cohen et. al., 2021] the authors proposed a method to use a family of linear reduced spaces as a generalised nonlinear reduced model for state estimation. A computable surrogate distance is used to evaluate which linear estimate lies closest to a true solution of the PDE problem. In this paper we propose a strategy of coarse computation of the surrogate distance while maintaining a fine mesh reduced model, as the computational cost of the surrogate distance is large relative to the reduced modelling task. We demonstrate numerically that the error induced by the coarse distance is dominated by other approximation errors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.